Evolution of Methods for Measurement of HDL-Cholesterol: From Ultracentrifugation to Homogeneous Assays
Open Access
- 1 September 2001
- journal article
- research article
- Published by Oxford University Press (OUP) in Clinical Chemistry
- Vol. 47 (9) , 1579-1596
- https://doi.org/10.1093/clinchem/47.9.1579
Abstract
Background: Adoption of automated homogeneous assays for HDL-cholesterol (HDL-C) is increasing, driven by the need of clinical laboratories to cope with increasing workloads while containing costs. However, performance characteristics of homogeneous assays often differ in important aspects from those of the earlier precipitation methods. This review provides an overview of the new generation of homogeneous assays for HDL-C within the historical context of the evolution of methods and the efforts to standardize measurements of the lipoproteins. Approach: This is a narrative review based on method evaluations conducted in the laboratories of the authors as well as on relevant publications, especially comparative evaluation studies, from the literature. Publications considered here have been collected by the authors over the past 30 years of involvement as methods for HDL-C made the transition from their early use in lipid research laboratories to clinical laboratories and the recent emergence of homogeneous assays. Content: The presentation includes descriptions of methodologies, including homogeneous, precipitation, electrophoresis, and ultracentrifugation assays. Reference methods and recommended approaches for assessing accuracy are described. Accuracy and imprecision are summarized in the context of the National Cholesterol Education Program (NCEP) standards for analytical performance. The effects of interfering substances and preanalytical sources of variation are presented. Summary: Homogeneous assays have been shown to be reasonably well suited for use in routine clinical laboratories, generally meeting the NCEP criteria for precision, accuracy, and total error. However, discrepant results compared with the reference methods have been observed with some of the assays, and the sources of discrepancies are not well characterized. Some homogeneous reagents have not been thoroughly evaluated. At least three of the reagents have experienced successive adjustments in formulation; hence, the reagents may not yet be fully optimized. For these reasons, the homogeneous assays cannot be confidently recommended for use in long-term clinical trials and other research applications without thorough validation.Keywords
This publication has 70 references indexed in Scilit:
- Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)JAMA, 2001
- ACC/AHA guidelines for the management of patients with acute myocardial infarctionJournal of the American College of Cardiology, 1996
- Antioxidative activity of high density lipoproteins in vivoAtherosclerosis, 1993
- Lipoprotein particle measurement: an alternative approach to classification of lipid disordersCurrent Opinion in Lipidology, 1991
- High-density lipoprotein cholesterol levels as a marker of reverse cholesterol transportThe American Journal of Cardiology, 1989
- HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study.Circulation, 1977
- Precipitation of Plasma Lipoproteins by PEG-6000 and Its Evaluation with Electrophoresis and UltracentrifugationScandinavian Journal of Clinical and Laboratory Investigation, 1976
- A comparison of heritable abnormal lipoprotein patterns as defined by two different techniquesJournal of Clinical Investigation, 1968
- Sur un dosage rapide du cholesterol lié aux α-et aux β-lipoprotéines du sérumClinica Chimica Acta; International Journal of Clinical Chemistry, 1960
- THE DISTRIBUTION AND CHEMICAL COMPOSITION OF ULTRACENTRIFUGALLY SEPARATED LIPOPROTEINS IN HUMAN SERUMJournal of Clinical Investigation, 1955