A model of radiating black hole in noncommutative geometry
Preprint
- 27 July 2005
Abstract
The phenomenology of a radiating Schwarzschild black hole is analyzed in a noncommutative spacetime. It is shown that noncommutativity does not depend on the intensity of the curvature. Thus we legitimately introduce noncommutativity in the weak field limit by a coordinate coherent state approach. The new interesting results are the following: i) the existence of a minimal non-zero mass to which black hole can shrink; ii) a finite maximum temperature that the black hole can reach before cooling down to absolute zero; iii) the absence of any curvature singularity. The proposed scenario offers a possible solution to conventional difficulties when describing terminal phase of black hole evaporation.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: