L'intégration par rapport à une mesure de Radon vectorielle
- 1 January 1970
- journal article
- Published by Cellule MathDoc/Centre Mersenne in Annales de l'institut Fourier
- Vol. 20 (2) , 55-191
- https://doi.org/10.5802/aif.352
Abstract
Summary:Let $X$ be a quasicomplete locally convex Hausdorff space. Let $T$ be a locally compact Hausdorff space and let $C_0(T) = lbrace f: T
ightarrow I$, $f$ is continuous and vanishes at infinity$
brace $ be endowed with the supremum norm. Starting with the Borel extension theorem for $X$-valued $sigma $-additive Baire measures on $T$, an alternative proof is given to obtain all the characterizations given in [13] for a continuous linear map $u: C_0(T)
ightarrow X$ to be weakly compact
Keywords
This publication has 0 references indexed in Scilit: