Distinct roles for de novo versus hydrolytic pathways of sphingolipid biosynthesis in Saccharomyces cerevisiae
- 13 January 2006
- journal article
- research article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 393 (3) , 733-740
- https://doi.org/10.1042/bj20050643
Abstract
Saccharomyces cerevisiae produces the sphingolipid ceramide by de novo synthesis as well as by hydrolysis of complex sphingolipids by Isc1p (inositolphosphoceramide-phospholipase C), which is homologous with the mammalian neutral sphingomyelinases. Though the roles of sphingolipids in yeast stress responses are well characterized, it has been unclear whether Isc1p contributes to stress-induced sphingolipids. The present study was undertaken in order to distinguish the relative roles of de novo sphingolipid biosynthesis versus Isc1p-mediated sphingolipid production in the heat-stress response. Ceramide production was measured at normal and increased temperature in an ISC1 deletion and its parental strain (ISC1 being the gene that codes for Isc1p). The results showed that Isc1p contributes specifically to the formation of the C24-, C24:1- and C26-dihydroceramide species. The interaction between these two pathways of sphingolipid production was confirmed by the finding that ISC1 deletion is synthetically lethal with the lcb1-100 mutation. Interestingly, Isc1p did not contribute significantly to transient cell-cycle arrest or growth at elevated temperature, responses known to be regulated by the de novo pathway. In order to define specific contributions of ISC1, microarray hybridizations were performed, and analyses showed misregulation of genes involved in carbon source utilization and sexual reproduction, which was corroborated by defining a sporulation defect of the isc1Δ strain. These results indicate that the two pathways of ceramide production in yeast interact, but differ in their regulation of ceramides of distinct molecular species and serve distinct cellular functions.Keywords
This publication has 48 references indexed in Scilit:
- The Phosphatidylglycerol/Cardiolipin Biosynthetic Pathway Is Required for the Activation of Inositol Phosphosphingolipid Phospholipase C, Isc1p, during Growth of Saccharomyces cerevisiaePublished by Elsevier ,2005
- The Effect of Normalization on Microarray Data AnalysisDNA and Cell Biology, 2004
- Acute Activation of de Novo Sphingolipid Biosynthesis upon Heat Shock Causes an Accumulation of Ceramide and Subsequent Dephosphorylation of SR ProteinsJournal of Biological Chemistry, 2002
- Regulation of Stress Response Signaling by the N-terminal Dishevelled/EGL-10/Pleckstrin Domain of Sst2, a Regulator of G Protein Signaling in Saccharomyces cerevisiaeJournal of Biological Chemistry, 2002
- Role for de Novo Sphingoid Base Biosynthesis in the Heat-induced Transient Cell Cycle Arrest of Saccharomyces cerevisiaeJournal of Biological Chemistry, 2001
- Genome-Wide Location and Function of DNA Binding ProteinsScience, 2000
- Serine Palmitoyltransferase Regulates de NovoCeramide Generation during Etoposide-induced ApoptosisJournal of Biological Chemistry, 2000
- Ceramide synthase mediates daunorubicin-induced apoptosis: An alternative mechanism for generating death signalsCell, 1995
- Pheromone-induced phosphorylation of a G protein β subunit in S. cerevisiae is associated with an adaptive response to mating pheromoneCell, 1991
- A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATIONCanadian Journal of Biochemistry and Physiology, 1959