Modulation by GABA of neuroplasticity in the central and peripheral nervous system

Abstract
Apart from being a prominent (inhibitory) neurotransmitter that is widely distributed in the central and peripheral nervous system, γ-aminobutyric acid (GABA) has turned out to exert trophic actions. In this manner GABA may modulate the neuroplastic capacity of neurons and neuron-like cells under various conditions in situ and in vitro. In the superior cervical ganglion (SCG) of adult rat, GABA induces the formation of free postsynaptic-like densities on the dendrites of principal neurons and enables implanted foreign (cholinergic) nerves to establish functional synaptic contacts, even while preexisting connections of the preganglionic axons persist. Apart from postsynaptic effects, GABA inhibits acetylcholine release from preganglionic nerve terminals and changes, at least transiently, the neurochemical markers of cholinergic innervation (acetylcholinesterase and nicotinic receptors). In murine neuroblastoma cells in vitro, GABA induces electron microscopic changes, which are similar in principle to those seen in the SCG. Both neuroplastic effects of GABA, in situ and in vitro, could be mimicked by sodium bromide, a hyperpolarizing agent. In addition, evidence is available that GABA via A- and/or B-receptors may exert direct trophic actions. The regulation of both types of trophic actions (direct, receptor-mediated vs. indirect, bioelectric activity dependent) is discussed.

This publication has 93 references indexed in Scilit: