Triangular mass matrices of quarks and Cabibbo-Kobayashi-Maskawa mixing

Abstract
Every nonsingular fermion mass matrix, by an appropriate unitary transformation of right-chiral fields, is equivalent to a triangular matrix. Using the freedom in choosing bases of right-chiral fields in the minimal standard model, reduction to triangular form reduces the well-known ambiguities in reconstructing a mass matrix to trivial phase redefinitions. Furthermore, diagonalization of the quark mass sectors can be shifted to one charge sector only, without loosing the concise and economic triangular form. The corresponding effective triangular mass matrix is reconstructed, up to trivial phases, from the moduli of the CKM matrix elements, and vice versa, in a unique way. A new formula for the parametrization independent CP-measure in terms of observables is derived and discussed.

This publication has 0 references indexed in Scilit: