Ultrasonic method to determine gas porosity in aluminum alloy castings: Theory and experiment

Abstract
The characterization of porosity in solids using the frequency dependence of the ultrasonic attenuation is discussed both from the theoretical and experimental viewpoint. The major thrust of our work is the determination of the volume fraction and size of the voids for the case of dilute porosity (3N4, as well as aluminum. Figures of merit which partially describe those situations in which the method is usable are also presented. In the experimental work a digitized spectrum analysis system was used to measure the frequency dependence of the attenuation coefficient in A357 aluminum cast alloys. In the cast materials the average pore size was in the order of 100 μm and the pore concentration varied from essentially 0 to 6%. It was found that experimental measurement of the attenuation could be fit by the theoretical model. The resulting parameters yield a good estimate of the pore volume fraction.