Sensitivity of Building Loss Estimates to Major Uncertain Variables

Abstract
This paper examines the question of which sources of uncertainty most strongly affect the repair cost of a building in a future earthquake. Uncertainties examined here include spectral acceleration, ground-motion details, mass, damping, structural force-deformation behavior, building-component fragility, contractor costs, and the contractor's overhead and profit. We measure the variation (or swing) of the repair cost when each basic input variable except one is taken at its median value, and the remaining variable is taken at its 10th and at its 90th percentile. We perform this study using a 1960s highrise nonductile reinforced-concrete moment-frame building. Repair costs are estimated using the assembly-based vulnerability (ABV) method. We find that the top three contributors to uncertainty are assembly capacity (the structural response at which a component exceeds some damage state), shaking intensity (measured here in terms of damped elastic spectral acceleration, Sa), and details of the ground motion with a given Sa.