Randomly forced Rayleigh-Bénard convection

Abstract
We consider the onset of Rayleigh–Bénard convection from random fluctuations arising within a fluid. In the specific case in which the fluctuations are thermodynamically determined, we reduce the problem to a random initial value problem for the Fourier modes. For the case of weak nonlinear convection, it is possible to truncate the number of modes and this truncated set is solved both by a Monte Carlo technique and by moment methods for various Rayleigh numbers. We find three stages in the evolution of ordered convection from random fluctuations which correspond to time intervals in which the fluctuations and the nonlinearity have different degrees of importance. It is shown that no simple moment truncation method will succeed and that the time for onset of convection is a mean over a distribution of times for which members of an ensemble exhibit appreciable convective transport.

This publication has 18 references indexed in Scilit: