Neuroprotective Properties of the Natural Vitamin E α-Tocotrienol

Abstract
Background and Purpose— The current work is based on our previous finding that in neuronal cells, nmol/L concentrations of α-tocotrienol (TCT), but not α-tocopherol (TCP), blocked glutamate-induced death by suppressing early activation of c-Src kinase and 12-lipoxygenase. Methods— The single neuron microinjection technique was used to compare the neuroprotective effects of TCT with that of the more widely known TCP. Stroke-dependent brain tissue damage was studied in 12-Lox-deficient mice and spontaneously hypertensive rats orally supplemented with TCT. Results— Subattomole quantity of TCT, but not TCP, protected neurons from glutamate challenge. Pharmacological as well as genetic approaches revealed that 12-Lox is rapidly tyrosine phosphorylated in the glutamate-challenged neuron and that this phosphorylation is catalyzed by c-Src. 12-Lox-deficient mice were more resistant to stroke-induced brain injury than their wild-type controls. Oral supplementation of TCT to spontaneously hypertensive rats led to i...