Responses of Lake Trout (Salvelinus namaycush) to Harvesting, Stocking, and Lamprey Reduction

Abstract
Sustained yields, declines, and recovery of lake trout (Salvelinus namaycush) can be explained by a simple model that hypothesizes normal population regulation through density dependent body growth, coupled with depensatory lamprey mortality. The model indicates that either lamprey or fishing alone could have caused the Lake Superior decline, though they apparently operated in concert. The presence of depensatory lamprey mortality leads to a "cliff edge" in the system's dynamics, such that catastrophic changes may be repeated in the future. It is not unlikely that Lake Superior is on the verge of a second collapse. Options for dealing with potential disasters include conservative harvesting policies, development of more sensitive monitoring indicators, and modified stocking policies that may speed the coevolution of a viable lamprey/trout association.Key words: lake trout, sea lamprey, simulation, Great Lakes, policy analysis

This publication has 0 references indexed in Scilit: