Theory of analyte extraction by selected porous polymer SPME fibres†

Abstract
Extraction of analytes by the new porous polymer solid phase microextraction (SPME) fibres is based on adsorption rather than absorption. The equilibrium theory developed for the liquid poly(dimethylsiloxane) (PDMS) coating does not apply to these coatings. The paper presents theoretical description of the extraction process for adsorption-type fibres, including PDMS–DVB (divinyl benzene), Carbowax–DVB and Carbowax–TR (template resin). The model is based on Langmuir adsorption isotherm. Expressions describing the amount of analyte extracted by the fibre in two- and three-phase systems are presented and discussed. The effect of selected experimental variables is discussed. In general, there is a non-linear dependence between the amount of an analyte extracted by the fibre and its concentration in a sample. The dependence can be approximated by a straight line for low concentrations only. Matrix composition can significantly affect the amount extracted. Interferences co-extracted with the analyte of interest may reduce the amount extracted and the quasi-linear range of the response. Great care should be exercised therefore when performing quantitative analysis with porous polymer SPME fibres. The phenomena discussed are illustrated on an example of benzene and 4-methyl-2-pentanone extraction from water by PDMS–DVB and Carbowax–DVB fibres.

This publication has 0 references indexed in Scilit: