Elastic Moduli of Composites Reinforced by Multiphase Particles

Abstract
A theoretical approach is proposed to estimate the elastic moduli of three-phase composites consisting of a matrix phase reinforced by two-phase particles. The theoretical predictions are based on a simple extension to nondilute concentrations of the mechanical concentration factors obtained from the recent analysis of the average elastic fields in a double inclusion by Hori and Nemat-Nasser (1993). The proposed micromechanics theory can account for the effects of shapes and concentrations of both the particles and the dispersed phase in the particles. Theoretical estimates of the concentration factors and the effective elastic moduli are obtained in closed form and are diagonally symmetric and fall within the Hashin-Shtrikman-Walpole bounds for all cases considered. The theoretical predictions are in excellent agreement with experimental results obtained from pulse-echo and rod-resonance measurements of the elastic moduli of a three-phase composite consisting of an aluminum matrix reinforced by mullite/alumina particles.

This publication has 21 references indexed in Scilit: