Characterization of mutations in the penicillinase operon of Staphylococcus aureus

Abstract
Mutant penicillinase plasmids, in which penicillinase synthesis is not inducible by penicillin or a penicillin analogue, were examined by biochemical and genetic analyses. In five of the six mutants tested, penicillinase synthesis could be induced by growth in the presence of 5-methyltryptophan. It is known that the tryptophan analogue 5-methyltryptophan is readily incorporated into protein by S. aureus and that staphylococcal penicillinase lacks tryptophan. 5-methyltryptophan seems to induce penicillinase synthesis in wild-type plasmids by becoming incorporated into the repressor and thereby inactivating the operator binding function of the penicillinase repressor. Therefore, induction of penicillinase synthesis in the mutant plasmids by 5-methyltryptophan strongly suggests that the noninducible phenotype of these five plasmids is due to a mutation that inactivates the effector binding site of the penicillinase repressor (i.e., the five mutant plasmids carry an is genotype for the penicillinase repressor). This conclusion was supported by heterodiploid analysis. The mutant plasmid that did not respond to 5-methyltryptophan either produces an exceedingly low basal level of penicillinase or does not produce active enzyme. This plasmid seems to carry a mutation in the penicillinase structural gene or in the promoter for the structural gene. Thus, a genetic characterization of many mutations in the penicillinase operon can be accomplished easily and rapidly by biochemical analysis.