Radiation damage studies related to nuclear waste forms

Abstract
Much of the previously reported work on alpha radiation effects on crystalline phases of importance to nuclear waste forms has been derived from radiation effects studies of composite waste forms. In the present work, two single-phase crystalline materials, Gd/sub 2/Ti/sub 2/O/sub 7/ (pyrochlore) and CaZrTi/sub 2/O/sub 7/ (zirconolite), of relative importance to current waste forms were studied independently by doping with /sup 244/Cm at the 3 wt % level. Changes in the crystalline structure measured by x-ray diffraction as a function of dose show that damage ingrowth follows an expected exponential relationship of the form ..delta..V/V/sub 0/ = A(1-exp(-BD)). In both cases, the materials became x-ray amorphous before the estimated saturation value was reached. The predicted magnitudes of the unit cell volume changes at saturation are 5.4% and 3.5%, respectively, for Gd/sub 2/Ti/sub 2/O/sub 7/ and CaZrTi/sub 2/O/sub 7/. The later material exhibited anisotropic behavior in which the expansion of the monoclinic cell in the c/sub 0/ direction was over five times that of the a/sub 0/ direction. The effects of transmutations on the properties of high-level waste solids have not been studied until now because of the long half-lives of the important fission products. This problem was circumvented inmore » the present study by preparing materials containing natural cesium and then irradiating them with neutrons to produce /sup 134/Cs, which has only a 2y half-life. The properties monitored at about one year intervals following irradiation have been density, leach rate and microstructure. A small amount of x-ray diffraction work has also been done. Small changes in density and leach rate have been observed for some of the materials, but they were not large enough to be of any consequence for the final disposal of high level wastes. « less

This publication has 0 references indexed in Scilit: