The Mechanics of Ozone Cracking

Abstract
Experimental measurements are described of the growth of a cut in a stretched rubber sheet under the action of an atmosphere containing ozone. A well-defined rate of crack growth is obtained, substantially independent of the applied tensile stress when this exceeds a critical value necessary for growth to occur at all. The rate of growth is found to be similar for a number of polymers and principally determined by the ozone concentration when the mobility of the polymer molecules is sufficiently high. When the molecular mobility is inadequate, crack growth is retarded. The critical condition is found to be similar for all the polymers examined, and largely independent of the conditions of exposure; it appears to reflect an energy requirement for growth of about 40 ergs/cm2 of newly-formed surface. The effect of the degree of vulcanization and the presence of additives, including antiozonants, on these two factors has also been examined. The dialkyl-p-phenylene diamines are found to confer protection by raising the critical energy required for growth to occur, in contrast to other protective agents which affect only the rate of crack propagation.

This publication has 0 references indexed in Scilit: