Abstract
Adhesion of the hydrophilicLeptospira biflexa serovarpatoc 1 (L. patoc) was consistently greater on inert hydrophobic surfaces than on hydrophilic surfaces (glass and plastic). When inert substrata were coated with fetal calf serum (FCS) or bovine serum albumin fraction V (BSA), however, surface hydrophobicity was reduced compared to untreated surfaces, but adhesion ofL. patoc increased. The mechanism of adhesion at protein-coated surfaces is likely to be different than that at untreated surfaces, but it is suggested that the adhesion is nonspecific, as the level of adhesion is similar for different protein coatings. Increased adhesion to FCS- and BSA-coated surfaces was apparently not associated with substrate utilization (scavenging of fatty acids) from the coatings, as essentially fatty acid-free BSA-coated surfaces had similar levels of adhesion. The presence of FCS in the diluent lowered the adhesion ofL. patoc regardless of the original nature of the substratum. This may result from the mutual repulsion of the bacterium and the substratum caused by the exclusion volumes of similar macromolecules adsorbed to both surfaces from the FCS solution.