Statistical tools for synthesizing lists of differentially expressed features in related experiments

Abstract
We propose a novel approach for finding a list of features that are commonly perturbed in two or more experiments, quantifying the evidence of dependence between the experiments by a ratio. We present a Bayesian analysis of this ratio, which leads us to suggest two rules for choosing a cut-off on the ranked list of p values. We evaluate and compare the performance of these statistical tools in a simulation study, and show their usefulness on two real datasets.