The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamycin signaling

Abstract
We studied antitumor effects of receptor tyrosine kinase inhibitor sunitinib (formerly SU11248) against a variety of hematologic malignancies including the following leukemias: eosinophilic (EOL-1), acute myeloid (THP-1, U937, Kasumi-1), biphenotypic (MV4-11), acute lymphoblastic (NALL-1, Jurkat, BALL-2, PALL-1, PALL-2), blast crisis of chronic myeloid (KU812, Kcl-22, K562), and adult T-cell (MT-1, MT-2, MT-4), as well as non-Hodgkin's lymphoma (KS-1, Dauji, Akata) and multiple myeloma (U266). Thymidine uptake studies showed that sunitinib was active against EOL-1, MV4-11, and Kasumi-1 cells, which possessed activating mutations of the PDGFRα, FLT-3, and c-KIT genes, respectively, with IC50s of FLT3 gene. Annexin V staining showed that sunitinib induced apoptosis of these cells. Sunitinib inhibited phosphorylation of FLT3 and PDGFRα in conjunction with blockade of mammalian target of rapamycin signaling in MV4-11 and EOL-1 cells, respectively. Interestingly, rapamycin analogue RAD001 enhanced the ability of sunitinib to inhibit the proliferation of leukemia cells and down-regulate levels of mammalian target of rapamycin effectors p70 S6 kinase and eukaryotic initiation factor 4E–binding protein 1 in these cells. Taken together, sunitinib may be useful for treatment of individuals with leukemias possessing activation mutation of tyrosine kinase, and the combination of sunitinib and RAD001 represents a promising novel treatment strategy. [Mol Cancer Ther 2006;5(10):2522–30]