Stability analysis of two-dimensional models of three-dimensional convection

Abstract
Analytical and numerical methods are used to study the linear stability of spatially periodic solutions for various two-dimensional equations which model thermal convection in fluids. This analysis suggests new model equations that will be useful for investigating questions such as wave-number selection, pattern formation, and the onset of turbulence in large-aspect-ratio Rayleigh-Bénard systems. In particular, we construct a nonrelaxational model that has stability boundaries similar to those calculated for intermediate Prandtl-number fluids.