Simulation of the Earth' Monthly Average Regional Radiation Balance Derived from Satellite Measurements

Abstract
Computer simulations of satellite-derived Earth radiation parameters are examined to determine the source and size of errors arising from averaging parameters over 1 month on a 2.5°×2.5° longitude-latitude grid. November 1978 data from the Geostationary Operational Environmental Satellite (GOES) have been used as a source of radiation parameter fields within each region. The regions are sampled according to various combinations of satellite orbits which have been chosen on the basis of their applicability to the Earth Radiation Budget Experiment. A mathematical model is given for the data-processing algorithms that are used to produce daily, monthly and monthly hourly estimates of shortwave, longwave and net radiant exitance. Because satellite sampling of each region is sparse during any day, and because the meteorological behavior between measurements is unknown, the retrieved diurnal cycle in shortwave radiant exitance is especially sensitive to the temporal distribution of measurements. The re... Abstract Computer simulations of satellite-derived Earth radiation parameters are examined to determine the source and size of errors arising from averaging parameters over 1 month on a 2.5°×2.5° longitude-latitude grid. November 1978 data from the Geostationary Operational Environmental Satellite (GOES) have been used as a source of radiation parameter fields within each region. The regions are sampled according to various combinations of satellite orbits which have been chosen on the basis of their applicability to the Earth Radiation Budget Experiment. A mathematical model is given for the data-processing algorithms that are used to produce daily, monthly and monthly hourly estimates of shortwave, longwave and net radiant exitance. Because satellite sampling of each region is sparse during any day, and because the meteorological behavior between measurements is unknown, the retrieved diurnal cycle in shortwave radiant exitance is especially sensitive to the temporal distribution of measurements. The re...

This publication has 0 references indexed in Scilit: