Haptic information stabilizes and destabilizes coordination dynamics
Open Access
- 7 June 2001
- journal article
- Published by The Royal Society in Proceedings Of The Royal Society B-Biological Sciences
- Vol. 268 (1472) , 1207-1213
- https://doi.org/10.1098/rspb.2001.1620
Abstract
Goal–directed, coordinated movements in humans emerge from a variety of constraints that range from ‘high–level’ cognitive strategies based on perception of the task to ‘low–level’ neuromuscular–skeletal factors such as differential contributions to coordination from flexor and extensor muscles. There has been a tendency in the literature to dichotomize these sources of constraint, favouring one or the other rather than recognizing and understanding their mutual interplay. In this experiment, subjects were required to coordinate rhythmic flexion and extension movements with an auditory metronome, the rate of which was systematically increased. When subjects started in extension on the beat of the metronome, there was a small tendency to switch to flexion at higher rates, but not vice versa. When subjects were asked to contact a physical stop, the location of which was either coincident with or counterphase to the auditory stimulus, two effects occurred. When haptic contact was coincident with sound, coordination was stabilized for both flexion and extension. When haptic contact was counterphase to the metronome, coordination was actually destabilized, with transitions occurring from both extension to flexion on the beat and from flexion to extension on the beat. These results reveal the complementary nature of strategic and neuromuscular factors in sensorimotor coordination. They also suggest the presence of a multimodal neural integration process—which is parametrizable by rate and context—in which intentional movement, touch and sound are bound into a single, coherent unit.Keywords
This publication has 67 references indexed in Scilit:
- Symmetry in locomotor central pattern generators and animal gaitsNature, 1999
- To Switch or Not to Switch: Recruitment of Degrees of Freedom Stabilizes Biological CoordinationJournal of Motor Behavior, 1999
- The Timing of Intralimb CoordinationJournal of Motor Behavior, 1999
- Attention and handedness in bimanual coordination dynamics.Journal of Experimental Psychology: Human Perception and Performance, 1997
- Effects of task instructions and oscillation frequency on bimanual coordinationPsychological Research, 1996
- Phase Transitions and Critical Fluctuations in Rhythmic Coordination of Ipsilateral Hand and FootJournal of Motor Behavior, 1995
- States of mindNature, 1995
- Symmetry breaking dynamics of human multilimb coordination.Journal of Experimental Psychology: Human Perception and Performance, 1992
- Timing and Phase Locking in Cascade JugglingEcological Psychology, 1989
- A theoretical model of phase transitions in human hand movementsBiological Cybernetics, 1985