Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion

Abstract
Preparations of purified full-length fusion (F) protein of human respiratory syncytial virus (HRSV) expressed in recombinant vaccinia-F infected cells, or of an anchorless mutant (FTM) lacking the C-terminal 50 amino acids secreted from vaccinia-FTM-infected cells contain a minor polypeptide that is an intermediate product of proteolytic processing of the F protein precursor F0. N-terminal sequencing of the intermediate demonstrated that it is generated by cleavage at a furin-motif, residues 106–109 of the F sequence. By contrast, the F1 N terminus derives from cleavage at residue 137 of F0 which is also C-terminal to a furin recognition site at residues 131–136. Site-directed mutagenesis indicates that processing of F0 protein involves independent cleavage at both sites. Both cleavages are required for the F protein to be active in membrane fusion as judged by syncytia formation, and they allow changes in F structure from cone- to lollipop-shaped spikes and the formation of rosettes by anchorless F.