Abstract
We investigated the hypothesis that stomatal aperture is regulated by epidermal water status. Detached epidermal peels of Commelina communis L. or leaf disks with epidermis attached were incubated in graded solutions of mannitol (0–1.2 M) containing KCl. In isolated epidermis, guard-cell solute content of open stomata did not decrease in response to desiccation. Guard cells of closed stomata accumulated solutes to the same extent in all levels of mannitol tested. There was no evidence of stress-induced hydroactive closure nor of inhibition of hydroactive opening, even when guard cells of closed stomata were initially plasmolyzed. Hydropassive, osmometer-like, changes in stomatal aperture in the isolated epidermis were induced by addition or removal of mannitol, but these did not involve changes in guard-cell solute content. In leaf disks, stomata exhibited clear hydroactive stomatal responses. Steady-state guard-cell solute content of initially open and initially closed stomata decreased substantially with increasing mannitol. Stomata were completely closed above approx. 0.4 M mannitol, near the turgor-loss point for the bulk leaf tissue. Stomata of Commelina did not exhibit direct hydroactive responses to environmental or epidermal water status. Stomatal responses to water deficit and low humidity may be indirect, mediated by abscisic acid or other signal metabolite(s) from the mesophyll.