Insect herbivory in an intact forest understory under experimental CO 2 enrichment
- 1 March 2004
- journal article
- Published by Springer Nature in Oecologia
- Vol. 138 (4) , 566-573
- https://doi.org/10.1007/s00442-003-1463-5
Abstract
Human-induced increases in atmospheric CO2 concentration have the potential to alter the chemical composition of plant tissue, and thereby affect the amount of tissue consumed by herbivorous arthropods. At the Duke Forest free-air concentration enrichment (FACE) facility in North Carolina (FACTS−1 research facility), we measured the amount of leaf tissue damaged by insects and other herbivorous arthropods during two growing seasons in a deciduous forest understory continuously exposed to ambient (360 μl l−1) and elevated (~560 µl l−1) CO2 conditions. In 1999, there was a significant interaction between CO2 and species such that winged elm (Ulmus alata) showed lower herbivory in elevated CO2 plots, whereas red maple (Acer rubra) and sweetgum (Liquidambar styraciflua) did not. In 2000, our results did not achieve statistical significance but the magnitude of the result was consistent with the 1999 results. In 1999 and 2000, we found a decline (10–46%) in community-level herbivory in elevated CO2 plots driven primarily by reductions in herbivory on elm. The major contribution to total leaf damage was from missing tissue (66% of the damaged tissue), with galls, skeletonized, and discolored tissue making smaller contributions. It is unclear whether the decline in leaf damage is a result of altered insect populations, altered feeding, or a combination. We were not able to quantify insect populations, and our measurements did not resolve an effect of elevated CO2 on leaf chemical composition (total nitrogen, carbon, C/N, sugars, phenolics, starch). Despite predictions from a large number of single-species studies that herbivory may increase under elevated CO2, we have found a decrease in herbivory in a naturally established forest understory exposed to a full suite of insect herbivores and their predators.Keywords
This publication has 14 references indexed in Scilit:
- Elevated CO 2 lowers relative and absolute herbivore density across all species of a scrub-oak forestOecologia, 2003
- Altered performance of forest pests under atmospheres enriched by CO2 and O3Nature, 2002
- Host Plant Quality and Fecundity in Herbivorous InsectsAnnual Review of Entomology, 2002
- Patterns in the Fate of Production in Plant CommunitiesThe American Naturalist, 1999
- Net Primary Production of a Forest Ecosystem with Experimental CO 2 EnrichmentScience, 1999
- DECREASED LEAF-MINER ABUNDANCE IN ELEVATED CO2: REDUCED LEAF QUALITY AND INCREASED PARASITOID ATTACKEcological Applications, 1999
- The impact of elevated CO 2 on plant-herbivore interactions: experimental evidence of moderating effects at the community levelOecologia, 1998
- The effects of elevated CO 2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availabilityOecologia, 1997
- Catechin, proanthocyanidin and lignin contents of loblolly pine (Pinus taeda) needles after chronic exposure to ozoneNew Phytologist, 1996
- Plant-insect herbivore interactions in elevated CO2 environmentsTrends in Ecology & Evolution, 1993