Decay of isotropic turbulence in the initial period

Abstract
In a previous paper the authors described direct measurements of all the terms in the equation for the rate of change of mean square vorticity in isotropic turbulence. The present paper is concerned with developments arising from the earlier work and with the experimental verification of some recent theoretical investigations. The results of measurements of the turbulent intensity u ' and of λ are presented; these establish that u' -2 and λ 2 are each proportional to the time of decay provided that the time is not too large. Within this initial period of the decay, the double and triple velocity correlation functions are found to maintain their form, i.e. to be self-preserving, for small values of the distance r between the two points at which the correlations are taken. For larger separations the double velocity correlation function changes its form slightly during decay and direct measurements of λ and of the integral scale L show that λ/ L increases during the decay. Theoretical predictions about the shape of the correlation function, for limited ranges of r , at high and at low Reynolds numbers are compared with measurements. Theory has shown that the above decay law cannot persist indefinitely, and the present experiments confirm that the decay law changes in the expected direction when the time is large. A division of the life-history of the turbulence into initial, transition and final periods is suggested; within the initial period, a classification based on the Reynblds number is also possible. Some speculations on the interpretation of the initial period are presented.

This publication has 2 references indexed in Scilit: