An Observational and Numerical Study of a Cold Front Interacting with the Olympic Mountains during COAST IOP5
Open Access
- 1 June 1999
- journal article
- Published by American Meteorological Society in Monthly Weather Review
- Vol. 127 (6) , 1310-1334
- https://doi.org/10.1175/1520-0493(1999)127<1310:aoanso>2.0.co;2
Abstract
This paper documents the three-dimensional flow and precipitation structures associated with a weak cold front interacting with the Olympic Mountains and the subsequent development of a Puget Sound convergence zone. This study utilizes data collected during COAST IOP5 (the fifth intensive observing period of the Coastal Observation and Simulation with Topography field experiment) that took place on 11–12 December 1993. One of the most important data sources was a NOAA P-3 aircraft, which provided flight-level data, radar reflectivity, and Doppler winds as it circumnavigated the Olympics. Initially, frontal passage along the western foothills of the Olympics was accompanied by a 2°–3°C temperature drop, a rapid wind shift to northwesterlies, and an intense line of precipitation (35–45 dBZ); however, the wind shift and associated precipitation structures attenuated when the front began to ascend the windward slopes of the Olympics. Surface and P-3 observations document the deformation of the front ... Abstract This paper documents the three-dimensional flow and precipitation structures associated with a weak cold front interacting with the Olympic Mountains and the subsequent development of a Puget Sound convergence zone. This study utilizes data collected during COAST IOP5 (the fifth intensive observing period of the Coastal Observation and Simulation with Topography field experiment) that took place on 11–12 December 1993. One of the most important data sources was a NOAA P-3 aircraft, which provided flight-level data, radar reflectivity, and Doppler winds as it circumnavigated the Olympics. Initially, frontal passage along the western foothills of the Olympics was accompanied by a 2°–3°C temperature drop, a rapid wind shift to northwesterlies, and an intense line of precipitation (35–45 dBZ); however, the wind shift and associated precipitation structures attenuated when the front began to ascend the windward slopes of the Olympics. Surface and P-3 observations document the deformation of the front ...Keywords
This publication has 0 references indexed in Scilit: