Pairing-induced localization of the particle continuum in weakly bound nuclei

Abstract
The Hartree-Fock-Bogolyubov (HFB) problem for the cutoff local energy-density functional is solved numerically by using the Gor'kov formalism with an exact treatment of the particle continuum. The contributions from the resonant and "gas" continuum to the spectral density of the HFB eigenstates as well as the shifting and broadening of the discrete HF hole orbitals are clearly demonstrated with the illustrative example of the drip-line nucleus ^{70}Ca. The structure of the neutron density distribution in the localized ground state is analyzed, and the formation of its extended tail ("halo") is shown to be a collective pairing effect.

This publication has 0 references indexed in Scilit: