Abstract
Steady plane flow under gravity of an axisymmetric ice sheet resting on a horizontal rigid bed, subject to surface accumulation and ablation, basal drainage, and basal sliding is treated according to a power law between shear traction and velocity. The surface accumulation is taken to depend on height, and the drainage and sliding coefficient also depend on the height of overlying ice. The ice is described as a general non-linearly viscous incompressible fluid, and temperature variation through the ice sheet is neglected. Illustrations are presented for Glen’s power law (including the special case of a Newtonian fluid), and the polynomial law of Colbeck and Evans. The analysis follows that of Morland and Johnson (1980) where the analogous problem for an ice sheet deforming under plane flow was considered. Comparisons are made between the two models and it is found that the effect of the third dimension is to reduce (or leave unchanged) the aspect ratio for the cases considered, although no general formula can be obtained. This reduction is seen to depend on both the surface accumulation and the sliding law.

This publication has 4 references indexed in Scilit: