Depolarization of Lidar Returns from Virga and Source Cloud

Abstract
The observed depolarization of polarized lidar signals scattered from virga and a source cloud may be interpreted to show that the source cloud is largely glaciated, and the virga is composed of ice crystals not randomly oriented. The orientation of the ice crystals in the virga, generally possible only in a nonturbulent atmosphere, is demonstrated by depolarization ratios greater than 1. The cloud processes suggested by this observation are in agreement with other independent observations. Abstract The observed depolarization of polarized lidar signals scattered from virga and a source cloud may be interpreted to show that the source cloud is largely glaciated, and the virga is composed of ice crystals not randomly oriented. The orientation of the ice crystals in the virga, generally possible only in a nonturbulent atmosphere, is demonstrated by depolarization ratios greater than 1. The cloud processes suggested by this observation are in agreement with other independent observations.