Abstract
Using spatially resolved, deprojected ROSAT PSPC spectra of 10 of the brightest cooling flow galaxies and groups with low Galactic column densities we have detected intrinsic absorption over energies ~0.4-0.8 keV in half of the sample. Since no intrinsic absorption is indicated for energies below ~0.4 keV, the most reasonable model for the absorber is collisionally ionized gas at temperatures T=10^{5-6} K with most of the absorption arising from ionized states of oxygen but with a significant contribution from carbon and nitrogen. The soft X-ray emission of this warm gas can explain the sub-Galactic column densities of cold gas inferred within the central regions of most of the systems. Attributing the absorption to ionized gas reconciles the large columns of cold H and He inferred from EINSTEIN and ASCA with the lack of such columns inferred from ROSAT. Within the central ~10-20 kpc, where the constraints are most secure, the estimated mass of the ionized absorber is consistent with most (perhaps all) of the matter deposited by a cooling flow over the lifetime of the flow. Since the warm absorber produces no significant H or He absorption the large absorber masses are consistent with the negligible atomic and molecular H inferred from HI and CO observations of cooling flows. It is also found that if T > ~2x10^5 K then the optical and UV emission implied by the warm gas does not violate published constraints. Finally, we discuss how the prediction of warm ionized gas as the product of mass drop-out in these and other cooling flows can be verified with new CHANDRA and XMM observations. (Abridged)

This publication has 0 references indexed in Scilit: