A model for processing of movement in the visual system

Abstract
Processing of spatio-temporal information in the human visual system has been investigated thoroughly during the past decade, but is still far from being properly understood. Moreover, the theory of separation of information by means of sustained and transient channels already at the retinal level is not satisfactory, as experimental results indicate that these two types of channels span a continuum of temporal characteristics. It is however obvious, that the process of pattern recognition and velocity perception calls for their separation at some level of the hierarchy. In this communication, we extend our model of three-dimensional spatio-temporal frequency expansion in the visual system (Gafni and Zeevi, 1977) to show how velocity-information extraction channels, sensitive to direction and velocity exclusively, can be formed by simple summation of signals from well-defined sets of channels representing points in the frequency space. Correspondence of these channels to characteristics of the cortical neurons is discussed.