A Mechanism for Producing Magnetic Remanence in Meteorites and Lunar Samples by Cosmic-Ray Exposure

Abstract
An irradiation of 3 x 1017 neutrons per square centimeter in a reactor core produced an increase in the coercive force of iron and kamacite of 16 to 21 percent. The alternating-current demagnetization spectrum of saturation isothermal remanence was shifted toward higher coercive forces. Similar neutron fluences produced by cosmic-ray exposure may be capable of converting soft isothermal remanence in meteorites and lunar samples to remanence with a higher coercive force.