The influence of acid soil factors on the growth of snapbeans in major appalachian soils

Abstract
Acid soil limitations to plant growth were assessed In 55 horizons of 14 major Appalachian hill land soils. Aluminum sensitive “Romano” and Al‐tolerant “Dade” snapbeans (Phaseolus vulgaris L.) were grown for 5 weeks in limed and unlimed treatments of the 55 horizons. Shoot and root growth was depressed >20% in unlimed relative to limed treatments in approximately 2/3 of the horizons. Dade snapbeans were generally more tolerant of the acid soil conditions and had higher Ca concentrations in the shoots than Romano snapbeans. However, the sensitive‐tolerant snapbean pair could not consistently be used to identify horizons with soil Al problems. Growth of both snapbeans was generally best in A horizons and worst in E horizons. The E horizons in this study were characterized by low Ca saturation (exchangeable Ca x 100/cation exchange capacity) and high Al saturation (exchangeable Al x 100/cation exchange capacity). Exchangeable Ca, soil Ca saturation and total soil solution Ca were positively correlated (p<0.01) with snapbean root and shoot growth. Soil Al saturation, total soil solution Al and soil solution Al reacting in 15 seconds with 8‐hydroxyquinoline were negatively correlated (p<0.01) with growth. The ratio of Ca/Al in soil solution was more closely related to snapbean growth than the soil solution concentration of any individual element. Soil and soil solution Mn were, in general, not significantly correlated with snapbean growth. Many of the horizons in this study had both Al toxicity and Ca deficiency problems and interaction between Ca and Al affected both snapbean growth and Ca uptake. These findings confirm the importance of considering Ca as well as Al when investigating Al phytotoxicity.