Singular perturbation theory applied to magnetohydrostatic equilibria: Proof of convergence
- 1 June 1991
- journal article
- research article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 32 (6) , 1437-1439
- https://doi.org/10.1063/1.529299
Abstract
Magnetohydrostatic equilibria with two relevant length scales are considered. Their ratio Ε is assumed to be small. Regular solutions in the sense of singular perturbation theory are discussed and the magnetic flux function A (2‐D case) and Euler potentials α, β (3‐D case) are shown that can be expanded into convergent power series in Ε. This ensures further the existence of weakly 2‐D and 3‐D equilibria within a bounded domain.Keywords
This publication has 14 references indexed in Scilit:
- Magnetohydrodynamics in solar coronal and laboratory plasmas: A comparative studyPhysics Reports, 1988
- Theoretical study of onset conditions for solar eruptive processesSolar Physics, 1987
- The topology of force-free magnetic fields and its implications for coronal activityThe Astrophysical Journal, 1987
- On perturbations of magnetic field configurationsThe Astrophysical Journal, 1982
- Magnetic islands in the quiet magnetotailGeophysical Research Letters, 1980
- Open and closed magnetospheric tail configurations and their stabilityAstrophysics and Space Science, 1975
- Nonisothermal magnetostatic equilibria in a uniform gravity field. I - Mathematical formulationThe Astrophysical Journal, 1975
- Topological Dissipation and the Small-Scale Fields in Turbulent GasesThe Astrophysical Journal, 1972
- Spektraltheorie halbbeschränkter Operatoren I. und II. TeilMathematische Annalen, 1935
- Spektraltheorie halbbeschr nkter Operatoren und Anwendung auf die Spektralzerlegung von DifferentialoperatorenMathematische Annalen, 1934