Realization of a Four-Electrode Liquid Crystal Device With Full In-Plane Director Rotation

Abstract
A liquid crystal device with micrometer-scale hexagonal electrodes has been fabricated and characterized. By using weak anchoring at the liquid crystal interfaces, the orientation of the director is completely governed by the applied electric fields. The appropriate voltage waveforms applied to electrodes allow the director in the liquid crystal layer to be rotated in the plane parallel to the substrates over large angles, exceeding 180 deg. This paper is a technological and experimental verification of an earlier proposed device concept