Tutte Polynomials and Bicycle Dimension of Ternary Matroids
- 1 September 1989
- journal article
- research article
- Published by JSTOR in Proceedings of the American Mathematical Society
- Vol. 107 (1) , 17-25
- https://doi.org/10.2307/2048028
Abstract
Let $M$ be a ternary matroid, $t\left ( {M,x,y} \right )$ be its Tutte polynomial and $d\left ( M \right )$ be the dimension of the bicycle space of any representation of $M$ over ${\text {GF}}\left ( 3 \right )$. We show that, for $j = {e^{2i\pi /3}}$, the modulus of the complex number $t\left ( {M,j,{j^2}} \right )$ is equal to ${\left ( {\sqrt 3 } \right )^{d\left ( M \right )}}$. The proof relies on the study of the weight enumerator ${W_\mathcal {C}}\left ( y \right )$ of the cycle space $\mathcal {C}$ of a representation of $M$ over ${\text {GF}}\left ( 3 \right )$ evaluated at $y = j$. The main tool is the concept of principal quadripartition of $\mathcal {C}$ which allows a precise analysis of the evolution of the relevant invariants under deletion and contraction of elements. Soit $M$ un matroïde ternaire, $t\left ( {M,x,y} \right )$ son polynôme de Tutte et $d\left ( M \right )$ la dimension de l’espace des bicycles d’une représentation quelconque de $M$ sur ${\text {GF}}\left ( 3 \right )$. Nous montrons que, pour $j = {e^{2i\pi /3}}$, le module du nombre complexe $t\left ( {M,j,{j^2}} \right )$ est égal à ${\left ( {\sqrt 3 } \right )^{d\left ( M \right )}}$. La preuve s’appuie sur l’étude de l’énumérateur de poids ${W_\mathcal {C}}\left ( y \right )$ de l’espace des cycles $\mathcal {C}$ d’une représentation de $M$ sur ${\text {GF}}\left ( 3 \right )$ pour la valeur $y = j$. L’outil essentiel est le concept de quadripartition principale de $\mathcal {C}$ qui permet une analyse précise de l’évolution des invariants concernés relativement à la suppression ou contraction d’éléments.
This publication has 9 references indexed in Scilit:
- New Invariants in the Theory of KnotsThe American Mathematical Monthly, 1988
- A spanning tree expansion of the jones polynomialTopology, 1987
- Some evaluations of link polynomialsCommentarii Mathematici Helvetici, 1986
- On the Principal Edge Tripartition of a GraphPublished by Elsevier ,1978
- Weight Enumeration and the Geometry of Linear CodesStudies in Applied Mathematics, 1976
- A Decomposition for Combinatorial GeometriesTransactions of the American Mathematical Society, 1972
- The Tutte polynomialAequationes mathematicae, 1969
- A Contribution to the Theory of Chromatic PolynomialsCanadian Journal of Mathematics, 1954
- A ring in graph theoryMathematical Proceedings of the Cambridge Philosophical Society, 1947