Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions
- 1 May 1995
- journal article
- Published by Springer Nature in Bulletin of Mathematical Biology
- Vol. 57 (3) , 461-486
- https://doi.org/10.1007/bf02460635
Abstract
To ensure its sustained growth, a tumour may secrete chemical compounds which cause neighbouring capillaries to form sprouts which then migrate towards it, furnishing the tumour with an increased supply of nutrients. In this paper a mathematical model is presented which describes the migration of capillary sprouts in response to a chemoattractant field set up by a tumour-released angiogenic factor, sometimes termed a tumour angiogenesis factor (TAF). The resulting model admits travelling wave solutions which correspond either to successful neovascularization of the tumour or failure of the tumour to secure a vascular network, and which exhibit many of the characteristic features of angiogenesis. For example, the increasing speed of the vascular front, and the evolution of an increasingly developed vascular network behind the leading capillary tip front (the brush-border effect) are both discernible from the numerical simulations. Through the development and analysis of a simplified caricature model, valuable insight is gained into how the balance between chemotaxis, tip proliferation and tip death affects the tumour's ability to induce a vascular response from neighbouring blood vessels. In particular, it is possible to define the success of angiogenesis in terms of known parameters, thereby providing a potential framework for assessing the viability of tumour neovascularization in terms of measurable quantities.Keywords
This publication has 36 references indexed in Scilit:
- A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factorMathematical Medicine and Biology: A Journal of the IMA, 1993
- Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesisJournal of Theoretical Biology, 1991
- A Mathematical Model for the Diffusion of Tumour Angiogenesis Factor into the Surrounding Host TissueMathematical Medicine and Biology: A Journal of the IMA, 1991
- Tumor angiogenic activity of gynecologic tumor cell lines on the chorioallantoic membraneGynecologic Oncology, 1988
- Angiogenic FactorsScience, 1987
- Endothelial cell-matrix interactions: in vitro models of angiogenesis.Journal of Histochemistry & Cytochemistry, 1986
- A mathematical model of tumour-induced capillary growthJournal of Theoretical Biology, 1985
- The propagation of fungal colonies: a model for tissue growthJournal of Theoretical Biology, 1982
- Factors from 3T3 cells stimulate proliferation of cultured vascular endothelial cellsNature, 1977
- Differentiation of vascular endothelium in the chick chorioallantois: A structural and autoradiographic studyDevelopmental Biology, 1974