Tracer Equivalent Latitude: A Diagnostic Tool for Isentropic Transport Studies

Abstract
Area equivalent latitude based on potential vorticity (PV) is a widely used diagnostic for isentropic transport in the stratosphere and upper troposphere. Here, an alternate method for calculating equivalent latitude is explored, namely, a numerical synthesis of a PV-like tracer from a long-term integration of the advection–diffusion equation on isentropic surfaces. It is found that the tracer equivalent latitude (TrEL) behaves much like the traditional PV equivalent latitude (PVEL) despite the simplified governing physics; this is evidenced by examining the kinematics of the Arctic lower stratospheric vortex. Yet in some cases TrEL performs markedly better as a coordinate for long-lived trace species such as ozone. These instances include analysis of lower stratospheric ozone during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE) campaign and three-dimensional reconstruction of total column ozone during November–December 1999 from fitted ozone-equivalent latitude relationship. It is argued that the improvement is due to the tracer being free from the diagnostic errors and certain diabatic processes that affect PV. The sensitivity of TrEL to spatial and temporal resolution, advection scheme, and driving winds is also examined.