A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription
Open Access
- 21 April 2006
- journal article
- research article
- Published by Oxford University Press (OUP) in Bioinformatics
- Vol. 22 (14) , 1753-1759
- https://doi.org/10.1093/bioinformatics/btl154
Abstract
Motivation: Quantitative estimation of the regulatory relationship between transcription factors and genes is a fundamental stepping stone when trying to develop models of cellular processes. This task, however, is difficult for a number of reasons: transcription factors’ expression levels are often low and noisy, and many transcription factors are post-transcriptionally regulated. It is therefore useful to infer the activity of the transcription factors from the expression levels of their target genes. Results: We introduce a novel probabilistic model to infer transcription factor activities from microarray data when the structure of the regulatory network is known. The model is based on regression, retaining the computational efficiency to allow genome-wide investigation, but is rendered more flexible by sampling regression coefficients independently for each gene. This allows us to determine the strength with which a transcription factor regulates each of its target genes, therefore providing a quantitative description of the transcriptional regulatory network. The probabilistic nature of the model also means that we can associate credibility intervals to our estimates of the activities. We demonstrate our model on two yeast datasets. In both cases the network structure was obtained using chromatin immunoprecipitation data. We show how predictions from our model are consistent with the underlying biology and offer novel quantitative insights into the regulatory structure of the yeast cell. Availability: MATLAB code is available from Contact:guido@dcs.shef.ac.uk Supplementary information: Supplementary data are available on Bioinformatics online.Keywords
This publication has 15 references indexed in Scilit:
- Logic of the Yeast Metabolic Cycle: Temporal Compartmentalization of Cellular ProcessesScience, 2005
- Accounting for probe-level noise in principal component analysis of microarray dataBioinformatics, 2005
- Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat culturesFEMS Yeast Research, 2005
- A tractable probabilistic model for Affymetrix probe-level analysis across multiple chipsBioinformatics, 2005
- Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammalsNature, 2005
- Genomic analysis of regulatory network dynamics reveals large topological changesNature, 2004
- Transcriptional regulatory code of a eukaryotic genomeNature, 2004
- Inferring quantitative models of regulatory networks from expression dataBioinformatics, 2004
- Transcriptional Regulatory Networks in Saccharomyces cerevisiaeScience, 2002
- Comprehensive Identification of Cell Cycle–regulated Genes of the YeastSaccharomyces cerevisiaeby Microarray HybridizationMolecular Biology of the Cell, 1998