CTLA-4 Gene Polymorphism at Position 49 in Exon 1 Reduces the Inhibitory Function of CTLA-4 and Contributes to the Pathogenesis of Graves’ Disease
Top Cited Papers
Open Access
- 1 December 2000
- journal article
- research article
- Published by Oxford University Press (OUP) in The Journal of Immunology
- Vol. 165 (11) , 6606-6611
- https://doi.org/10.4049/jimmunol.165.11.6606
Abstract
Activation of T cells requires at least two signals transduced by the Ag-specific TCR and a costimulatory ligand such as CD28. CTLA-4, expressed on activated T cells, binds to B7 present on APCs and functions as a negative regulator of T cell activation. Our laboratory previously reported the association of Graves’ disease (GD) with a specific CTLA-4 gene polymorphism. In theory, reduced expression or function of CTLA-4 might augment autoimmunity. In the present study, we categorized autoimmune thyroid disease patients and normal controls (NC) by genotyping a CTLA-4 exon 1 polymorphism and investigated the function of CTLA-4 in all subjects. PBMCs and DNA were prepared from GD (n = 45), Hashimoto’s thyroiditis (HT) (n = 18), and NC (n = 43). There were more GD patients with the G/G or A/G alleles (82.2% vs 65.1% in NC), and significantly fewer patients with the A/A allele (17.8% vs 34.9% in NC). In the presence of soluble blocking anti-human CTLA-4 mAb, T cell proliferation following incubation with allogeneic EBV-transformed B cells was augmented in a dose-dependent manner. Augmentation induced by CTLA-4 mAb was similar in GD and NC (GD, HT, NC = 156%, 164%, 175%, respectively). We related CTLA-4 polymorphism to mAb augmentation of T cell proliferation in each subgroup (GD, HT, NC). Although PBMC from individuals with the G/G alleles showed 132% augmentation, those with the A/A alleles showed 193% augmentation (p = 0.019). CTLA-4 polymorphism affects the inhibitory function of CTLA-4. The G allele is associated with reduced control of T cell proliferation and thus contributes to the pathogenesis of GD and presumably of other autoimmune diseases.Keywords
This publication has 48 references indexed in Scilit:
- The Emerging Role of CTLA-4 as an Immune AttenuatorImmunity, 1997
- A CTLA‐4 gene polymorphism is associated with both Graves' disease and autoimmune hypothyroidismClinical Endocrinology, 1997
- New Aspects of Thyroid ImmunityHormone Research, 1997
- An Mse I RFLP in the Human CTLA4 PromotorBiochemical and Biophysical Research Communications, 1996
- The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes RegistryHuman Molecular Genetics, 1996
- Genetic markers in diagnosis and prediction of relapse in Graves’ disease*Experimental and Clinical Endocrinology & Diabetes, 1996
- Lymphoproliferative Disorders with Early Lethality in Mice Deficient in Ctla-4Science, 1995
- CTLA-4 gene polymorphism associated with Graves' disease in a Caucasian populationJournal of Clinical Endocrinology & Metabolism, 1995
- CTLA-4 can function as a negative regulator of T cell activationImmunity, 1994
- Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes.The Journal of Experimental Medicine, 1992