An Ensemble Generation Method for Seasonal Forecasting with an Ocean–Atmosphere Coupled Model
- 1 February 2005
- journal article
- Published by American Meteorological Society in Monthly Weather Review
- Vol. 133 (2) , 441-453
- https://doi.org/10.1175/mwr-2863.1
Abstract
Seasonal forecasts are subject to various types of errors: amplification of errors in oceanic initial conditions, errors due to the unpredictable nature of the synoptic atmospheric variability, and coupled model error. Ensemble forecasting is usually used in an attempt to sample some or all of these various sources of error. How to build an ensemble forecasting system in the seasonal range remains a largely unexplored area. In this paper, various ensemble generation methodologies for the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecasting system are compared. A series of experiments using wind perturbations (applied when generating the oceanic initial conditions), sea surface temperature (SST) perturbations to those initial conditions, and random perturbation to the atmosphere during the forecast, individually and collectively, is presented and compared with the more usual lagged-average approach. SST perturbations are important during the first 2 months of the forecast to ensure a spread at least equal to the uncertainty level on the SST measure. From month 3 onward, all methods give a similar spread. This spread is significantly smaller than the rms error of the forecasts. There is also no clear link between the spread of the ensemble and the ensemble mean forecast error. These two facts suggest that factors not presently sampled in the ensemble, such as model error, act to limit the forecast skill. Methods that allow sampling of model error, such as multimodel ensembles, should be beneficial to seasonal forecasting.Keywords
This publication has 24 references indexed in Scilit:
- DEVELOPMENT OF A EUROPEAN MULTIMODEL ENSEMBLE SYSTEM FOR SEASONAL-TO-INTERANNUAL PREDICTION (DEMETER)Bulletin of the American Meteorological Society, 2004
- Sensitivity of dynamical seasonal forecasts to ocean initial conditionsQuarterly Journal of the Royal Meteorological Society, 2004
- Balanced Ocean-Data Assimilation near the EquatorJournal of Physical Oceanography, 2002
- Salinity Adjustments in the Presence of Temperature Data AssimilationMonthly Weather Review, 2002
- Predicting uncertainty in forecasts of weather and climateReports on Progress in Physics, 2000
- Stochastic representation of model uncertainties in the ECMWF ensemble prediction systemQuarterly Journal of the Royal Meteorological Society, 1999
- ENSO theoryJournal of Geophysical Research: Oceans, 1998
- Skill assessment for ENSO using ensemble predictionQuarterly Journal of the Royal Meteorological Society, 1998
- The dynamics of error growth and predictability in a coupled model of ENSOQuarterly Journal of the Royal Meteorological Society, 1996
- Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variabilityTellus A: Dynamic Meteorology and Oceanography, 1977