Tikhonov regularization and prior information in electrical impedance tomography

Abstract
The solution of impedance distribution in electrical impedance tomography is a nonlinear inverse problem that requires the use of a regularization method. The generalized Tikhonov regularization methods have been popular in the solution of many inverse problems. The regularization matrices that are usually used with the Tikhonov method are more or less ad hoc and the implicit prior assumptions are, thus, in many cases inappropriate. In this paper, the authors propose an approach to the construction of the regularization matrix that conforms to the prior assumptions on the impedance distribution. The approach is based on the construction of an approximating subspace for the expected impedance distributions. It is shown by simulations that the reconstructions obtained with the proposed method are better than with two other schemes of the same type when the prior is compatible with the true object. On the other hand, when the prior is incompatible with the true object, the method will still give reasonable estimates.