Anticonvulsant activities of phenyl-substituted bicyclic 2,4-oxazolidinediones and monocyclic models. Comparison with binding to the neuronal voltage-dependent sodium channel

Abstract
8,9-Dioxo-6-phenyl-1-aza-7-oxabicyclo[4.2.1]nonane (1) and 9,10-dioxo-7-phenyl-1-aza-8-oxabicyclo[5.2.1]decane (2), examples of anti-Bredt bicyclic 2,4-oxazolidinediones, were investigated as anticonvulsants in mice. Compound 2 was the more potent (anti-MES ED50=66 mg/kg), and its in vivo anti-MES effect was consistent with its in vitro potency of binding to the voltage-sensitive sodium channel (IC50=160 .mu.M for the inhibition of binding of [3H]BTX-B), suggesting that 2 may be a new class I anticonvulsant. Several partial structures of 2, either monocyclic lactams or monocyclic 2,4-oxazolidinediones, were also evaluated in these assaysm, but no correlation was observed between sodium channel binding and anti-MES effects. A significant finding was that monocyclic 5-alkyl-5-phenyl-2,4-oxazolidinediones provided relatively potent, nontoxic, broad-spectrum anticonvulsants.

This publication has 10 references indexed in Scilit: