Redox regulation of p53 during hypoxia
- 8 August 2000
- journal article
- Published by Springer Nature in Oncogene
- Vol. 19 (34) , 3840-3848
- https://doi.org/10.1038/sj.onc.1203727
Abstract
The transcription factor p53 can induce growth arrest or death in cells. Tumor cells that develop mutations in p53 demonstrate a diminished apoptotic potential, which may contribute to growth and tumor metastasis. Cellular levels of p53 are stabilized during hypoxia. The present study tested the hypothesis that reactive oxygen species (ROS) released from mitochondria regulate the cytosolic redox state and are required for the stabilization of p53 protein levels in response to hypoxia. Our results indicate that hypoxia (1.5% O2) increases mitochondrial ROS generation and increases p53 protein levels in human breast carcinoma MCF-7 cells and in normal human diploid fibroblast IMR-90 cells. MCF-7 cells depleted of their mitochondrial DNA (rho(o) cells) failed to stabilize p53 protein levels during hypoxia. The antioxidant N-acetylcysteine and the Cu/Zn superoxide dismutase inhibitor diethyldithiocarbamic acid abolished the hypoxia-induced increases in ROS and p53 levels. Rotenone, an inhibitor of mitochondrial complex I, and 4,4'-diisothiocyanato-stilbene-2,2'-disulfonate, a mitochondrial anion channel inhibitor, also abolished the increase in ROS signal and p53 levels during hypoxia. The p53-dependent gene p21WAF1/CIP1 was also induced by hypoxia in both MCF-7 and IMR-90 cells without affecting the growth rate of either cell line. In contrast, both cell lines exhibited increases in p21WAF1/CIP1 expression and growth arrest after gamma irradiation. Primary chick cardiac myocytes and murine embryonic fibroblasts also showed an increase in p53 protein levels in response to hypoxia without cell death or growth arrest. These results indicate that mitochondria regulate p53 protein levels during hypoxia through a redox-dependent mechanism involving ROS. Despite p53-induction, hypoxia alone does not cause either growth arrest or cell death.Keywords
This publication has 35 references indexed in Scilit:
- Intracellular Signaling by Reactive Oxygen Species during Hypoxia in CardiomyocytesJournal of Biological Chemistry, 1998
- Life (and death) in a malignant tumourNature, 1996
- Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumoursNature, 1996
- The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinasesCell, 1993
- WAF1, a potential mediator of p53 tumor suppressionCell, 1993
- p53 Mutations in Human CancersScience, 1991
- Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondriaArchives of Biochemistry and Biophysics, 1985
- Mechanism of action of paracetamol protective agents in mice in vivoBiochemical Pharmacology, 1984
- The oxygen dependence of cellular energy metabolismArchives of Biochemistry and Biophysics, 1979
- On the Origin of Cancer CellsScience, 1956