Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response
- 26 March 2008
- journal article
- research article
- Published by Springer Nature in Glycoconjugate Journal
- Vol. 25 (6) , 581-593
- https://doi.org/10.1007/s10719-008-9123-y
Abstract
Traditional production of therapeutic glycoproteins relies on mammalian cell culture technology. Glycoproteins produced by mammalian cells invariably display N-glycan heterogeneity resulting in a mixture of glycoforms the composition of which varies from production batch to production batch. However, extent and type of N-glycosylation has a profound impact on the therapeutic properties of many commercially relevant therapeutic proteins making control of N-glycosylation an emerging field of high importance. We have employed a combinatorial library approach to generate glycoengineered Pichia pastoris strains capable of displaying defined human-like N-linked glycans at high uniformity. The availability of these strains allows us to elucidate the relationship between specific N-linked glycans and the function of glycoproteins. The aim of this study was to utilize this novel technology platform and produce two human-like N-linked glycoforms of recombinant human lactoferrin (rhLF), sialylated and non-sialylated, and to evaluate the effects of terminal N-glycan structures on in vitro secondary humoral immune responses. Lactoferrin is considered an important first line defense protein involved in protection against various microbial infections. Here, it is established that glycoengineered P. pastoris strains are bioprocess compatible. Analytical protein and glycan data are presented to demonstrate the capability of glycoengineered P. pastoris to produce fully humanized, active and immunologically compatible rhLF. In addition, the biological activity of the rhLF glycoforms produced was tested in vitro revealing the importance of N-acetylneuraminic (sialic) acid as a terminal sugar in propagation of proper immune responses.Keywords
This publication has 49 references indexed in Scilit:
- Lactoferrin modulation of IL-12 and IL-10 response from activated murine leukocytesMedical Microbiology and Immunology, 2007
- Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathwaysCellular Immunology, 2006
- Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastorisGlycobiology, 2004
- Immunoregulatory Activities of Lactoferrin in the Delayed Type Hypersensitivity in Mice are Mediated by a Receptor with Affinity to MannoseImmunobiology, 2002
- TGF-β1: immunosuppressant and viability factor for T lymphocytesMicrobes and Infection, 1999
- Lactoferrin: Molecular Structure and Biological FunctionAnnual Review of Nutrition, 1995
- Structural determination of two N‐linked glycans isolated from recombinant human lactoferrin expressed in BHK cellsFEBS Letters, 1995
- Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamilyCurrent Biology, 1994
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976
- IMMUNIZATION OF DISSOCIATED SPLEEN CELL CULTURES FROM NORMAL MICEThe Journal of Experimental Medicine, 1967