The smooth variational principle and generic differentiability

Abstract
A modified version of the smooth variational principle of Borwein and Preiss is proved. By its help it is shown that in a Banach space with uniformly Gâteaux differentiable norm every continuous function, which is directionally differentiable on a dense Gδ subset of the space, is Gâteaux differentiable on a dense Gδ subset of the space.

This publication has 10 references indexed in Scilit: