Thiostrepton-resistant mutants exhibit relaxed synthesis of RNA.

Abstract
Spontaneous mutants of Bacillus subtilis resistant to thiostrepton (TSP) exhibit relaxed synthesis of RNA when starved for required amino acids. Intact cells of tsp mutants cannot synthesize the regulatory nucleotides, ppGpp and pppGpp, after amino acid deprivation. Because ribosomes isolated from spontaneous revertants to thiostrepton sensitivity and from wild-type stringent strains can synthesize (p)ppGpp whereas ribosomes isolated from tsp strains cannot synthesize these regulatory nucleotides in the presence of stringent factor, it appears that the lesion is expressed at the level of the ribosome. Genetic mapping, via three-factor transformational crosses, has shown that tsp is closely linked to rif, in the order cysA14, tsp, rif-I, strA. The phenotype of the tsp mutants indicates that they are of the relC type. Their map position indicates that they are different from a previously described B subtilis rel mutation. Ribosomes from the latter strain can synthesize (p)ppGpp in cell-free extracts.