Abstract
The relativistic mean-field model of the nucleus is reviewed. It describes the nucleus as a system of Dirac nucleons which interact in a relativistic covariant manner via meson fields. The meson fields are treated as mean fields, i.e. as non-quantal c-number fields. The effect of the Dirac sea of the nucleons is neglected. The model is interpreted as a phenomenological ansatz providing a self-consistent relativistic description of nuclei and nuclear dynamics. It is viewed, so to say, as the relativistic generalisation of the Skyrme-Hartree-Fock ansatz. The capability and the limitations of the model to describe nuclear properties are discussed. Recent applications to spherical and deformed nuclei and to nuclear dynamics are presented.