Direct Evidence that Saquinavir Is Transported by Multidrug Resistance-Associated Protein (MRP1) and Canalicular Multispecific Organic Anion Transporter (MRP2)
Open Access
- 1 November 2002
- journal article
- research article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 46 (11) , 3456-3462
- https://doi.org/10.1128/aac.46.11.3456-3462.2002
Abstract
To determine if saquinavir mesylate (saquinavir) is a substrate of human multidrug resistance-associated protein 1 (hMRP1 [ABCC1]) or hMRP2 (cMOAT, or ABCC2), MDCKII cells that overexpress either hMRP1 (MDCKII-MRP1) or hMRP2 (MDCKII-MRP2) were used to investigate saquinavir9s cytotoxicity and transport in comparison with those of control MDCKII wild-type (MDCKII/wt) cells. Cytotoxicity was assessed with the mitochondrial marker MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium], and saquinavir transport was measured directly through the cell monolayers. GF120918 (an inhibitor of P glycoprotein, but not of the MRP family) and MK-571 (an MRP family inhibitor) were used to delineate the specific contributions of these transporters to saquinavir cytotoxicity and transport. In the presence of GF120918 and increasing saquinavir concentrations, the MDCKII-MRP1 (50% lethal dose [LD50] = 10.5 μM) and MDCKII-MRP2 (LD50 = 27.1 μM) cell lines exhibited statistically greater viability than the MDCKII/wt cells (LD50 = 7.8 μM). Saquinavir efflux was directional, not saturable, and was inhibited by MK-571 (35 and 75 μM) in all cell lines. The ratios of saquinavir (3 μM) basolateral to apical permeability (i.e., efflux ratios) for the MDCKII/wt, MDCKII-MRP1, and MDCKII-MRP2 cell monolayers were 2.6, 1.8, and 6.8, respectively. The MDCKII-MRP1 cells have a significantly reduced saquinavir efflux ratio relative to MDCKII/wt cells, due to basolaterally directed transport by hMRP1 competing with endogenous, apically directed canine MRP2. The MDCKII-MRP2 cells have a significantly increased saquinavir efflux ratio relative to MDCKII/wt cells, due to the additive effects of the apically directed transport by hMRP2 and endogenous MRP2. Collectively, the cytotoxicity and transport results provide direct evidence that saquinavir is transported by MRP1 and MRP2.Keywords
This publication has 29 references indexed in Scilit:
- Delineating the Contribution of Secretory Transporters in the Efflux of Etoposide Using Madin-Darby Canine Kidney (MDCK) Cells Overexpressing P-Glycoprotein (Pgp), Multidrug Resistance-Associated Protein (MRP1), and Canalicular Multispecific Organic Anion Transporter (cMOAT)Drug Metabolism and Disposition, 2002
- Comparison of Furosemide and Vinblastine Secretion from Cell Lines Overexpressing Multidrug Resistance Protein (P-Glycoprotein) and Multidrug Resistance-Associated Proteins (MRP1 and MRP2)Pharmacology, 2002
- P-glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance?AIDS, 2001
- HIV-Protease InhibitorsNew England Journal of Medicine, 1998
- Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA.Journal of Clinical Investigation, 1998
- The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors.Journal of Clinical Investigation, 1998
- Passive Diffusion of Weak Organic Electrolytes across Caco‐2 Cell Monolayers: Uncoupling the Contributions of Hydrodynamic, Transcellular, and Paracellular BarriersJournal of Pharmaceutical Sciences, 1995
- The Leukotriene LTD4 Receptor Antagonist Mk571 Specifically Modulates MRP Associated Multidrug ResistanceBiochemical and Biophysical Research Communications, 1995
- Quantitative Approaches To Delineate Paracellular Diffusion in Cultured Epithelial Cell MonolayersJournal of Pharmaceutical Sciences, 1994
- Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells.Proceedings of the National Academy of Sciences, 1980